Une approche de prédiction médicale basée sur les données cliniques utilisant des algorithmes d’apprentissage automatique

dc.contributor.authorSouad BOUTEARI Alla Eddine RICHE
dc.date.accessioned2024-09-19T09:23:31Z
dc.date.available2024-09-19T09:23:31Z
dc.date.issued2021
dc.description.abstractIn this work, we have designed four models to predict diabetes in order to reduce the risk and the occurrence of complications of this disease on the health of the patient. To design these models, we used four machine learning algorithms, i.e. K nearest neighbors KNN, Decision trees DT, Support Vector Machine SVM, and Logistic Regression LR. The performance of the obtained models was tested according to the accuracy of each model. The highest accuracy rates were obtained in the decision tree model in both the split method (Train / Test Split) and k_fold cross validation splitting model. Keywords: machine Learning, K nearest neighbors, Decision trees, Support vector machine, Logistic Regression, diabetes prediction, medical prediction.
dc.identifier.urihttp://dspace.univ-khenchela.dz:4000/handle/123456789/6640
dc.language.isofr
dc.titleUne approche de prédiction médicale basée sur les données cliniques utilisant des algorithmes d’apprentissage automatique
dc.typeThesis
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
004-077-M.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections