A Discrete Crow Search Algorithm for Mining Quantitative Association Rules

dc.contributor.authorAbderrahim Siam
dc.date.accessioned2024-03-13T20:34:32Z
dc.date.available2024-03-13T20:34:32Z
dc.date.issued2021
dc.description.abstractAssociationrulesarethespecificdataminingmethodsaimingtodiscoverexplicitrelationsbetweenthe differentattributesinalargedataset.However,inreality,severaldatasetsmaycontainbothnumericand categoricalattributes.Recently,manymeta-heuristicalgorithmsthatmimicthenaturearedeveloped forsolvingcontinuousproblems.Thisarticleproposesanewalgorithm,DCSA-QAR,formining quantitativeassociationrulesbasedoncrowsearchalgorithm(CSA).Toaccomplishthis,newoperators aredefinedtoincreasetheabilitytoexplorethesearchingspaceandensurethetransitionfromthe continuoustothediscreteversionofCSA.Moreover,anewdiscretizationalgorithmisadoptedfor numericalattributestakingintoaccountdependenciesprobablythatexistbetweenattributes.Finally, toevaluatetheperformance,DCSA-QARiscomparedwithparticleswarmoptimizationandmono andmulti-objectiveevolutionaryapproachesforminingassociationrules.Theresultsobtainedover real-worlddatasetsshowtheoutstandingperformanceofDCSA-QARintermsofqualitymeasures.
dc.identifier.urihttp://dspace.univ-khenchela.dz:4000/handle/123456789/4239
dc.language.isoen
dc.titleA Discrete Crow Search Algorithm for Mining Quantitative Association Rules
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A-Discrete-Crow-Search-Algorithm-for-Mining-Quantitative-Association-Rules.pdf
Size:
771.41 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: