A Discrete Crow Search Algorithm for Mining Quantitative Association Rules

No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Associationrulesarethespecificdataminingmethodsaimingtodiscoverexplicitrelationsbetweenthe differentattributesinalargedataset.However,inreality,severaldatasetsmaycontainbothnumericand categoricalattributes.Recently,manymeta-heuristicalgorithmsthatmimicthenaturearedeveloped forsolvingcontinuousproblems.Thisarticleproposesanewalgorithm,DCSA-QAR,formining quantitativeassociationrulesbasedoncrowsearchalgorithm(CSA).Toaccomplishthis,newoperators aredefinedtoincreasetheabilitytoexplorethesearchingspaceandensurethetransitionfromthe continuoustothediscreteversionofCSA.Moreover,anewdiscretizationalgorithmisadoptedfor numericalattributestakingintoaccountdependenciesprobablythatexistbetweenattributes.Finally, toevaluatetheperformance,DCSA-QARiscomparedwithparticleswarmoptimizationandmono andmulti-objectiveevolutionaryapproachesforminingassociationrules.Theresultsobtainedover real-worlddatasetsshowtheoutstandingperformanceofDCSA-QARintermsofqualitymeasures.
Description
Keywords
Citation