Fabrication of ordered layered SnO2/TiO2 heterostructures and their photocatalytic performance for methyl blue degradation
No Thumbnail Available
Date
2024-06-22
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The rapid growth in population and industrialization has given rise to serious environmental issues, especially the water pollution. Photocatalysis with the assist of semiconductor photocatalysts has been considered as an advanced oxidation technique
for degrading a variety of pollutants under solar irradiation. In this work, we have fabricated SnO2-TiO2 heterostructures with
different ordered layers of SnO2 and TiO2 via the sol–gel dip-coating technique and utilized in photocatalysis for degradation
of methyl blue dye under UV irradiation. The influence of the layer’s position on SnO2 and TiO2 properties is investigated
via the various techniques. The grazing incidence X-ray diffraction (GIXRD) analysis reveals that the as-prepared films
exhibit pure anatase TiO2 and kesterite SnO2 phases. The 2SnO2/2TiO2 heterostructure exhibit the maximum crystallite size
and smallest deviation from the ideal structure. Scanning electron microscopy cross-section images manifest good adhesion
of the layers to each other and to the substrate. Fourier transform infrared spectroscopy reveals the characteristic vibration
modes of SnO
2 and TiO2 phases. UV–visible spectroscopy measurements indicate that all films exhibit high transparency
(T = 80%) and the SnO2 film reveals a direct band gap of 3.6 eV, while the TiO2 film exhibits an indirect band gap of 2.9 eV.
The optimal 2SnO2/2TiO2 heterostructure film revealed best photocatalytic degradation performance and the reaction rate
constant for methylene blue solution under UV irradiation. This work will trigger the development of highly efficient heterostructure photocatalysts for environmental remediation.