Detection of broken rotor bar faults in induction motor at low load using neural network

dc.contributor.authorBESSAM Besma
dc.date.accessioned2024-02-13T16:18:59Z
dc.date.available2024-02-13T16:18:59Z
dc.date.issued2016
dc.description.abstractThe knowledgeofthebrokenrotorbarscharacteristicfrequenciesandamplitudeshasagreatimportance for allrelateddiagnosticmethods.Themonitoringofmotorfaultsrequiresahighresolutionspectrumto separatedifferentfrequencycomponents.TheDiscreteFourierTransform(DFT)hasbeenwidelyusedto achieve theserequirements.However,atlowslipthistechniquecannotgivegoodresults.Asasolution for theseproblems,this paper proposesanefficient techniquebasedonaneuralnetworkapproachand Hilbert transform(HT)forbrokenrotorbardiagnosisininductionmachinesatlowload.TheHilbert transform isusedtoextractthestatorcurrentenvelope(SCE).Twofeaturesareselectedfromthe(SCE) spectrum (theamplitudeandfrequencyoftheharmonic).Thesefeatureswillbeusedasinputforneural network.Theresultsobtainedareastonishinganditiscapabletodetectthecorrectnumberofbroken rotor bars under different load conditions.
dc.identifier.urihttp://dspace.univ-khenchela.dz:4000/handle/123456789/718
dc.language.isoen
dc.titleDetection of broken rotor bar faults in induction motor at low load using neural network
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
article2.pdf
Size:
618.28 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: