Detection of broken rotor bar faults in induction motor at low load using neural network

No Thumbnail Available
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The knowledgeofthebrokenrotorbarscharacteristicfrequenciesandamplitudeshasagreatimportance for allrelateddiagnosticmethods.Themonitoringofmotorfaultsrequiresahighresolutionspectrumto separatedifferentfrequencycomponents.TheDiscreteFourierTransform(DFT)hasbeenwidelyusedto achieve theserequirements.However,atlowslipthistechniquecannotgivegoodresults.Asasolution for theseproblems,this paper proposesanefficient techniquebasedonaneuralnetworkapproachand Hilbert transform(HT)forbrokenrotorbardiagnosisininductionmachinesatlowload.TheHilbert transform isusedtoextractthestatorcurrentenvelope(SCE).Twofeaturesareselectedfromthe(SCE) spectrum (theamplitudeandfrequencyoftheharmonic).Thesefeatureswillbeusedasinputforneural network.Theresultsobtainedareastonishinganditiscapabletodetectthecorrectnumberofbroken rotor bars under different load conditions.
Description
Keywords
Citation