Inverted HTS rectangular patch antennas: Theoretical investigation

dc.contributor.authorBedra Sami
dc.date.accessioned2024-02-13T15:08:09Z
dc.date.available2024-02-13T15:08:09Z
dc.date.issued2021
dc.description.abstractIn this paper, we propose a full-wave analysis for characterizing the resonant frequencies and bandwidths of high-temperature superconductor inverted microstrip printed on anisotropic substrates. Our proposed approach is based on Galerkin procedure in the Fourier transform domain (FTD) combining with the complex resistive boundary condition. With the use of suitable Green's functions in the FTD, the analysis is performed for the case where the superconducting rectangular patches printed on anisotropic substrate. The numerical results obtained using the proposed approach are compared with previously published numerical results computed by means of the electromagnetic simulator “IE3D software”. These comparisons were very good, which prove the correctness and the validity of the proposed method. It is found that the optical properties combined with optimally chosen structural parameters of anisotropic materials can be maintaining control of the resonant frequency and exhibiting wider bandwidth characteristics.
dc.identifier.citationBedra, S., Benkouda, S., Bedra, R., & Fortaki, T. (2021). Inverted HTS rectangular patch antennas: Theoretical investigation. Physica C: Superconductivity and its Applications, 580, 1353802.
dc.identifier.issn1873-2143
dc.identifier.urihttp://dspace.univ-khenchela.dz:4000/handle/123456789/698
dc.language.isoen
dc.publisherElsevier, Physica C: Superconductivity and its Applications
dc.titleInverted HTS rectangular patch antennas: Theoretical investigation
dc.typeArticle
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Physica C.pdf
Size:
909.96 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: