Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo

Dspace KHENCHELA

  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "H. Ben Temam"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Deposition Rate and Electrochemical Corrosion Behavior of Nickel-Based Composite Coatings
    (JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2022-12-27) F. Lekmine; I. Zidani; A. Chala; H. Ben Temam
    Metal corrosion control is technically, economically, environmentally and aesthetically important. The best option is to use coatings to protect metals and alloys from corrosion. Nickel plating is one of the most widely used methods for protecting less noble metal surfaces since the turn of the century. The need for improved coatings with better wear and corrosion resistance has led to the development and use of composite electrostatic deposits. In this paper, Ni-P-TiO2 composite coatings were fabricated by direct current electrodeposition on copper substrates. X-ray diffraction (XRD) analysis and energy dispersive spectroscopy (EDS) were employed to determine the average particle size of coatings elemental chemical composition. The electrochemical corrosion behavior of Ni-P-TiO2 composite coatings in 3.5 wt. % NaCl was characterized using a potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS). The results indicate that TiO2 nanoparticles are included in the coatings. The deposition rate increased with increasing current density; the microhardness of the coatings noticeably increased with current density. Corrosion tests have shown that 3 A.dm – 2 is the optimal value of the applied current density in terms of the lowest value Ecorr  – 504 mV and the best charge transfer resistance Rp  114.7 Ω.cm2.
  • No Thumbnail Available
    Item
    Mechanical Characterization of Electrodeposition of Ni-P Alloy Coating
    (JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2020-02-25) F. Lekmine; H. Ben Temam; M. Naoun; M. Hadjadj
    The electrodeposition process plays a crucial role in the formation of thin films on materials, in particular, the electrodeposition of nickel-phosphorus because of its important properties. In this study, Ni-P coatings were deposited on X52 steel substrates by electrodeposition technique from a solution containing nickel sulfate, sodium hypophosphite (NaH2PO2). Composition, surface morphology, and mechanical properties of the Ni-P deposits were studied using SEM, EDAX, the Vickers method, weight loss and potentiodynamic polarization techniques. The effects of the current density were investigated on the surface morphology, phosphorus content, microhardness and corrosion of the coatings. It was observed that both the phosphorus content and microhardness are dependent on the current density. Results demonstrate that the morphology of the electrodeposited Ni-P alloys shows that the grains are spherical in nature for all the samples. It has been observed that the influence of current density on the P content of the deposit is an inverse relation with phosphorous content and also the as-plated coatings at current density of 5 Am − 4 exhibit the superior microhardness. Corrosion tests show that 5 Am − 4 is the best current density value which gives the best protection coating against corrosion.
  • No Thumbnail Available
    Item
    Structural, Mechanical and Corrosion Behavior of Ni-P-TiO2 Composite Coatings: Effect of Current Density
    (JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 2021-02-28) 1. LEKMINE Farid; M. Naoun; A. Gana; H. Ben Temam
    Ni-P-TiO2 composite coatings are important in engineering due to their properties such as good resistance to wear and corrosion, magnetic properties, electrical and thermal conductivity. In this paper, the effect of current density on electrodeposited Ni-P-TiO2 composite coatings was investigated for the first time. Ni-P-TiO2 composite coatings were deposited with applied current densities (1, 3, 5, 7 and 9 A·dm – 2) on copper substrates. X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and microhardness analysis were used to study the morphological, microstructural and mechanical properties. On the other hand, the corrosion performance of the coatings was evaluated using Tafel polarization and electrochemical impedance spectroscopy (EIS). XRD results indicate that the inclusion of TiO2 nanoparticles into the coatings alters the relative intensity of Ni peak as well as peak breadth. In addition, microhardness of the coatings noticeably increased with current densities. Ni-P-TiO2 composite coating electrodeposited at 3 A·dm – 2 exhibits the best microhardness and corrosion resistance.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback