Browsing by Author "Chouhal Ouahiba"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Temporal Neuro-Fuzzy System for Estimating Remaining Useful Life in Preheater Cement Cyclones(World Scientific Publishing Company, 2019-06-16) rafik mahdaoui; Chouhal Ouahiba; hichem haouassiFault prognosis in industrial plants is a complex problem, and time is an important factor for the resolution of this problem. The main indicator for the task of fault prognosis is the estimate of remaining useful life (RUL), which essentially depends on the predicted time to failure. This paper introduces a temporal neuro-fuzzy system (TNFS) for performing the fault prognosis task and exactly estimating the RUL of preheater cyclones in a cement plant. The main component of the TNFS is a set of temporal fuzzy rules that have been chosen for their ability to explain the behavior of the entire system, the components’ degradation, and the RUL estimation. The benefit of introducing time in the structure of fuzzy rules is that a local memory of the TNFS is created to capture the dynamics of the prognostic task. More precisely, the paper emphasizes improving the performance of TNFSs for prediction. The RUL estimation process is broken down into four generic processes: building a predictive model, selecting the most critical parameters, training the TNFS, and predicting RUL through the generated temporal fuzzy rules. Finally, the performance of the proposed TNFS is evaluated using a real preheater cement cyclone dataset. The results show that our TNFS produces better results than classical neuro-fuzzy systems and neural networks.Item SOA-based distributed fault prognostic and diagnosis framework: an application for preheater cement cyclones(2021-01-08) Chouhal Ouahiba; rafik mahdaoui; Leaila hayet moussComplex engineering manufacturing systems require efficient online fault diagnosis methodologies to improve safety and reduce maintenance costs. Traditionally, diagnosis and prognosis approaches are centralised, but these solutions are difficult to implement on distributed systems; whereas a distributed approach of multiple diagnosis and prognosis agents can offer a solution. Also, controlling process plant from a remote location has several benefits including the ability to track and to assist in solving a problem that might arise. This paper presents a distributed and over prognosis and diagnosis approach for physical systems basing on multi agent system and service-oriented architecture. Specifics prognostic and diagnostic procedures and key modules of the architecture for web service-based distributed fault prognostic and diagnosis framework are detailed and developed for the preheater cement cyclones in the workshop of SCIMAT clinker. The experimental case study, reported in the present paper, shows encouraging results and fosters industrial technology transfer.